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THe fask B can access the same resource using OSSemPend ( ) if it is waiting for that semaphore. The task
B posits the semaphore using OSSemPost ( ) after completing the access to that resource.
FigIe 7.5(a) shows the use of a semaphore between A and B. It shows the five sequential actions at five

different times, TO, T1, T2, T3 and T4. Figure 7.5(b) shows the timing diagram of the tasks in the running
states ap a function of time. It marks the five sequential actions at five different times, TO, T1, T2, T3 and T4.
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Fig. b? (a) Use of a semaphore between tasks, A and B. It shows the five sequential actions at five
different times, TO, T1, T2, T3 and T4 (b) Timing diagram of the tasks in the running states

as a function of time. It marks the five sequential actions at five different times, TO, T1,

T2, T3 and T4, and shows the use of a semaphore between tasks A and B by the operating

system functions

}
An SR can’t be used to wait for the resource key since an ISR can just release the key. A task on the other
release the key as well accept the key or wait for taking the key. (row 7 Table 7.1)

Expnple 7.8

Cof ﬁer an (Section 1.5.5) Update_Time task. When the task for updating time t on a system clock tick
intg; ":t I starts, it has to notify that it is writing the t in a time device and that the t is changing. After the
Uplidre_Time task updates t information at the time device on I, it has to notify to the Read_Time task to

run wamng section of the code to read t from the time device. After the Read_Time reads t, it has to notify

it at Update_Time and pending and posted at Read_Tme section for reading t. Let supdateT initial
d g’: 1. The following will be the codes. ’

statig ?{void Task_ Update_Time (void *taskPointer) {
at
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while (1) { }

OSSemPend (supdateT) /* Wait the semaphore supdateT. This means that when wait over, an OS fithdtion
decrements supdateT in corresponding event control block and supdateT becomes 0 at T2. *ﬁ* ]

/* Codes for writing date and time into the time device. */ ;

OSSemPost (supdateT) /* Post the semaphore supdateT. This means that OS function increments smﬁteT
in corresponding event control block and supdateT becomes 1 at T3. */ '

)
static void Task_ Read_Time (void *taskPointer) {

o R L

while (1) { w1 4
Is
OSSemPend (supdateT) /* Wait for the semaphore supdateT. This means that task waits till supdateTﬁ ted
and becomes 1. When supdateT becomes 1 and the OS function then decrements supdateT in con'espoﬂdmg
event control block and supdateT becomes 0 at T4. Task then runs further the following code*/

/* Code for reading the date and time at time device ¥

OSSemPost (supdateT) /* Post the semaphore supdateT. This means that OS function
increments sypdateT in corresponding event control block. supdateT becomes 1. */
} '

Mutex When a binary semaphore is used to at beginning and end of critical sections in two or mofe tasks
such that at any instance only one section code can run, then the semaphore is called mutex. (mutex word is
derived from mutually exclusive). Example 7.8 showed that Task_ Update Time and Task Read_Time yses the

inversion safe or without inversion safe mutex.

1. Semaphore provides a mechanism to let a section of the task code or a task wait till another task sécfion
finishes another set of codes such that these sections use a common resource, device or file or vggiable.

2. When a semaphore is waiting (for taking or accepting) by a task code, then that task has the acp $ to
the necessary resources when semaphore is ‘given’ (sent or posted), the resources unlock. ]

3. Semaphore can be used as a resource key. Resource key is one that permits the use of resourc fike

CPU, memory or other functions or critical section codes. g
4. Binary semaphore can be used as a mutex as well as event notifying flag.
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Use of Multiple Semaphores for Synchronizing the Tasks

phore functions are provided for multitasking operations. Figure 7.6 shows an example of the use of

two sje:;aphores for synchronizing the tasks /, J and M and the tasks J and L. Example 7.9 gives another
pl

in which 7, J, K and L are synchronized to run sequentially.
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Fig. 7.6

J and M Block when X is taken by L

An example of the use of two semaphores —one for synchronizing the tasks /, J and M
and other for tasks J and L

b instance while others are waiting. Let the followmg be the codes.

Assgame OSSemPost () is an OS IPC function for posting a semaphore and assume OSSemPend ( ) is
‘;OS IPC function for waiting for the semaphore. Let sTask be the binary semaphore pending and

at each task to let another run. Let sTask] initially be 1 and sTask2 sTask3 and sTask4 initially be 0.

'fbllowmgwxllbethecodesandtheﬁrsttasklwmrun then J, then K, then L, then I when at that

‘E end (sTask1) /* wait for semaphore sTask1 and when wait over then an OS function decrements
sk 1 in corresponding event control block and sTask1 becomes 0 */

) for Task_1I */
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OSSeinPost (sTask2) /* Post the semaphore sTask2. This means that OS function increments
sTask2 in corresponding event control block. sTask2 becomes 1 */

|5 '

static void Task_ J (void *taskPointer) {

whlle M {
OSSemPend (sTask2) /* Wait for the semaphore sTask2. This means that task waits till sTask2is pasted
and becomes 1. When sTask2 becomes 1 and the OS function is to decrements sTask2 in con'espo nging
event control block. sTask2 becomes 0. Task then runs further the following code*/
/* Code for Task J */

OSSemPost (sTask3) /* Post the semaphore sTask3. This means that OS function increments sTa%kS in
corresponding event control block. sTask3 becomes 1. */

)

static void Task_ K (void *taskPointer) {

while (1) {
0SSemPend (sTask3) /* Wait for the semaphore sTask3. This means that task waits till sTask3 is pgsted
and becomes 1. When sTask3 becomes 1 and the OS function is to decrements sTask3 in corresppnding
event control block. sTask3 becomes 0. Task then runs further the following code*/
/* Code for Task K */
e
. L%
0SSemPost (sTask4) /* Post the semaphore sTask4. This means that OS function increments sT4sk4 in
corresponding event control block. sTask4 becomes 1. */
)
static void Task_ L (void *taskPointer) {

while (1) {

0SSemPend (sTask4) /* Wait for the semaphore sTask4. This means that task waits till sTask4 is popted
and becomes 1. When sTask4 becomes 1 and the OS function is to decrements sTask3 in i! "
corresponding event control block. sTask4 becomes 0. Task then runs further the following ¢

/* Code for Task J */

0OSSemPost (sTask1) /* Post the semaphore sTask1. This means that OS function increments !
sTask1 in corresponding event control block. sTask1 becomes 1. */

|5 n ]

For example, when a task K is to start running, it takes the semaphore sTask3. The OS

blocks the tasks 7, J and L. A task L waits for the release of the semaphore by K.

Number of tasks Waiting for the Same Semaphore  An RTOS has the answer to the fallowing:

when a number of tasks has the same semaphore waiting then which of them takes the semaphore? Ih ¢enajn
0S, a semaphore is given to the task of highest priority among the waiting tasks. In certain OS, a seaphore
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is giver] to the longest waiting task in the FIFO mode. In certain OS, a semaphore is given to select an option
and the] option is provided for priority or FIFO mode. The task having priority if started, takes a semaphore
first in pase the priority option is selected. The task pending since a longer period takes a semaphore first in
case the¢ FIFO option is selected.

;E ultiple semaphores are used and different set of semaphores can share among different set of tasks.
. [Semaphore provides a mechanism to synchronize the task codes. Multiple semaphores can be used
in multitasking system.

£
i
£
H

7.7.

An OS|may provide for the counting semaphores. A counting semaphore can be an unsigned 8- or 16- or 32-
bit intdger. A value of counting semaphore controls the blocking or running of the codes of a task. The
countirjg semaphore decrements each time it is taken. It increments when released by a task.

Thelvalue of counting semaphoréat an instance reflects the initialized value minus the number of times it is
taken plus the number of times released. The counting semaphore can be considered as the number of tokens
presentjand the waiting task will not wait and run further if at least one token is present. The use of a semaphore
is suchlthat one of the task thus waits to execute the codes or waits for a resource till at least one token is found.
e that a task can send the stacks on a network into eight sequentially transmitting buffers. Each time
the task runs it takes the semaphore and sends the stack into a buffer, which is next to the earlier one. Assume
that a dounting semaphore scnt is initialized = 8. After sending the data of the stack, the task takes the scnt and
ements. When a task tries to take the scnt when it is 0, then the task blocks and cannot send stack into

Counting Semaphores

umber of chocolates, fotal loaded into the machine. Assume that a semCnt is initialized equal to the
JEach time, the new chocolates are loaded in the machine, semCnt increments by the number of new
célates added. The Chocolate delivery task can be coded as follows.

(1) { /* Start an infinite while-loop. */
t for an event indicated by an IPC from Task Read-Amount */

nPend (semCnt) /* If chocolate available is true then the task takes the semaphore if
semp(at is 1 or > 1 (which means is not 0) and decrement the semCnt and continue remaining
opdrdtions */

ng semaphore can be consider as an unsigned integer semaphore that can be ‘taken’ till its value =
xs initialized to a high value. It can also be ‘given’ a number of times.
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7.7.5 P and V SEMAPHORES

An OS may provide for an efficient synchronization mechanism, called P and V semaphores in a stgndard,
called POSIX 1003.1.b, an IEEE standard (POSIX stands for portable OS interfaces in Unix). OS se phore
functions P and V represent the semaphore by integer variables. A semaphore variable, apart from initialization,
is accessed only through two standard atomic-operations: P and V. [P (for wait operation) is derived TOm a
Dutch word ‘Proberen’, which means ‘to test’. V (for signal notifying operation) is derived from thé word
“Verhogen” which means ‘to increment’.] (Atomic-operation is one, which can not be in parts.)
1. P semaphore function signals that the task requires a resource and if not available waits for it.
2. 'V semaphore function signals from the task to the OS that the resource is now free for th¢ other
users.
Consider P semaphore. It is a function, P (&sem_I) which, when called in a process, does the fol owing
operations using semaphore, sem_]. '

1. /* Decrease the semaphore variable*/ i'
sem_1 = sem_1 —-1;
2. /* If sem_1 is less than 0, send a message to OS by calling a function waitCallToOS. Control|of the
process transfers to OS, because less than 0 means that some other process has already executed P func
sem_1. Whenever there is return to the OS, it will be to step 1. */
if (sem 1 < 0){ waitCallToOS (sem_ 1 )}

operations using semaphore sem_2.

3. /* Increase the semaphore variable*/

sem_2 =sem_2 + 1;

4. /* If sem_2 is less or equal to 0, send a message to OS by calling a function signalCallToOS. Co
the process transfers to OS, because < or = 0 means that some other process has already executed P
on sem_2. Whenever there is return to the OS, it will be to step 3. */ i
if (sem_2 < = 0){signalCallToOS (sem_2);}

Use of P and V Semaphore Functions with a Signal or Notification Property P pnd V
functions can represent a signalling or notifying variable, sem_s when used as shown in Example 7.1}.

Example 7.11 5 |

Let sem_s be a semaphore variable. Let it function as a signal or notifying an event using variable ]
P and V semaphore functions are used in two processes, task 1 and task 2 as follows.

Process 1 (Task 1) . Process 2 (Task 2) il
while (true) { while (true) { gi !
/* Codes */ /* Codes */
P (&sem_s);
/* The following codes will execute only when \
sem_s is not less than 0. */ i

V (&sem_s); ) ’T j
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b jnue Process 1 if sem_s is not equal to 0
: kss than 0. It means that no process is
uking at present. */

‘4» I (Task 1) Process 2 (Task 2)

whilej@true) { while (true) {
/* Gogles before a critical region*/ /* Codes before a critical reglon*/

‘ Process 1 Critical region codes*/ /* Enter Process 2 Critical region codes*/

P ( _m); P (&sem_m);
r* gfollowmg codes will execute only when /* The following codes will execute only when
semy_m is not less than 0. */ sem_m is not less than 0. */
/* \ ;Process 1 critical region codes */ - /* Exit Process 2 critical region codes */
V (&$¢m_m); V (&sem_m);
/* G n inue Process 1 if sem_m is not equal to 0 /* Continue Process 2 if sem_m is not equal to 0
or rjo§ Jess than 0. It means that no process is or not less than 0. It means that no process is waiting
wailigg and has executed P function using and executed P function using sem_m at present.
senj_ja at present. */ */
b | f |5
elsame variable, sem_m, is shared between process 1 and process 2. Its use is in making both processes

gam tually exclusive access to the resource (CPU). Either process 1 runs after executing P or process 2
runs after executing P. Also, either process 1 runs after executing V or process 2 runs after executing V.
Flg 7.7(a) shows the use of P and V semaphores and the task , task J and the scheduler. When a task
semaphore P, if sem_m = ‘true’ (=1) earlier then it becomes ‘false’ (=0) and task run continues as
sem_m is not less than 0. When a task executes V, if sem_m was ‘false’ earlier then it sets to ‘true’ and the task
continyes running, else the task blocks and waits for the execution of another task. Figure 7.7(b) shows the PC
a551gn ents to a process or function when using P and V semaphores.
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Use of P-V Semaphore Functions with a Counting Semaphore Property Let theye be a
process (task c). The P function decrements the count and the function increments the counts. The P function
operates on a counting semaphore, sem_c1 as shown in Example 7.13.
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Fig. 7.7 (a) Use of P and V semaphores at a task 1, and at another task 2 and at a scheduler {b) The
program counter assignments to a process or function when using P and V semaphgres

Example 7.13

Assume a processes using P semaphore functions in task, task_c. Let sem_cl be a counting se t:10re
variable and represent the number of empty places created by the process c. P functions operate ese
and reduces the number of empty places as follows: 4

Process ¢ (Task_c) "(
while (true) {
/* Codes on entering a producer region*/
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*| After exiting the producer Process 3 region codes */
P &sem_cl);
f*Continue Process ¢ if sem_cl is not less than 0. */

Use of P and V Semaphore Functions with a Counting Semaphore Property for Bounded
Buffer| Problem Solution Let a task generate the outputs for use by another task. A task can have a
separate counting semaphore.

ider three examples:
a task transmits bytes to an 1/O stream for filling the available places at the stream;

(ii) a process ‘writes’ an I/O stream to a printer buffer and,
(iii.? a task of producing chocolates is being performed.
In‘ekample (i) another task reads the 1/O stream bytes from the filled places and creates empty places.

In ekample (ii), from the print buffer an 1/O stream prints after a buffer-read and after the printing, more

In ekample (iii) again, as consumer consumes the chocolates produced more empty places (to stock the
produced chocolates) are created.

A task blockage operational problem is commonly called producer—consumer problem. A task cannot
§t to the /O stream if there are no empty places in the stream. The task cannot write from the memory
at the print buffer if there are no empty places at the print buffer. The producer cannot produce if there are no

A cJassic program for synchronization is called the producer—consumer problem program. It is also called
boundkd buffer problem program. Here, one or more producers (task or thread processes) create data outputs
that arg then processed by one or more Consumers (tasks or processes). The data outputs from the producers
are pagsed for processing by the consumers using some type of IPC (Section 7.8) that uses a shared memory
unting semaphores (or message queues or mailboxes).
there be two processes (tasks 3 and 4). The P and V functions operate on two shared counting semaphores,

sem_dl and sem_c2, as in Example 7.14.
Exdmple 7.14
Adsithe two processes using P and V semaphore functions and two tasks, tasks 3 and 4. Let sem_cl and

sel  2 be two counting semaphore variables and represent the number of filled places created by the
prbckbs 3 and a number of empty places created by process 4, respectively. P and V functions operate on

orbeess 3 (Task 3) Process 4 (Task 4)
e (true) { while (true) {



1* Codes before a producer region*/ /* Codes before a consumer region*/

/* Enter Process 3 Producing region codes*/ /* Enter Process 4 Consuming region codes* ‘

P (&sem_c2); P (&sem_cl); ]

/* The following codes will execute only when  /* The following codes will execute only wh& i
sem_c2 (number of empty places)is not less sem_c1 (number of filled places) is not less -

than 0. */ than 0. */

/* Exit Process 3 region codes */ /* Exit Process 4 region codes */ i

V (&sem_cI); V (&sem_c2); (

/* Continue Process 3 if sem_c1 is not equal to 0 /* Continue Process 4 if sem_c2 is not eqﬁ 0
or not less than 0. */ or not less than 0. It means that filled p]acef f

still available at present. */ 1

Either process 3 produces output after executing P, or process 4 consumes (uses) inputs after executing P,
Also either process 3 proceeds after executing V or process 4 proceeds after executing V. !

P and V semaphore functions are in POSIX 100.3b, an IEEE-accepted standard for the IPCs. They
used as an event signalling, as a mutex, as a counting semaphore and the semaphores for the
buffer problem solution.

~ 7.8 T SHARED DATA

7.8.1 Problem of Sharing Data by Multiple Tasks and Routines

1

The shared data problem can be explained as follows: Assume that several functions (or ISRs or tasks) share
a variable. Let us assume that at an instant the value of that variable operates and during its operations, only
a part of the operation is completed and a part remains incomplete. At that moment, let us assume that efe is
an interrupt. Now, assume that there is another function. It also shares the same variable. The value bf, the
variable may differ from the one expected if the earlier operation had been completed. The incomplete opetation
can occur as follows. g
Suppose a variable is of 128 bits and the processor is of 32 bits. The operations on the variable will be using
four 32-bit ALU operations in order to use the 32-bit ALU of this processor. Atomic operation is one, which
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cannot be subdivided into the suboperations or none of the suboperations can be left incomplete and
no othef operation can start before all suboperations are complete. Now, assume that the 128-bit operation
on the vhriable is non-atomic. This means that the operation can be interrupted before all the four operations are
complefed. An interrupt can occur at the end of each 32-bit ALU operation, not necessarily at the end
of the128-bit operation. Therefore, the called ISR or another function can use the incompletely operated variable
ange that variable when it shares with another function. On return, new values of that variable will be
apd the incomplete operations will be performed on that new 128-bit variable in place of the old one.

finsider x, a 128-bit variable, byy;....... b,. Assume that the operation OPy is shift left by 2 bits to
? tiply it by 4 and find y = 4 X x. Let OP; done non-atomically in four suboperations, OPA, OPB,
'(PC, and OPDy for bs;........ bo > bgzeeevees bsy , bos....... be, and byyy....... by, Tespectively. Assuming
Qn instance that suboperations OPAy, OPB and OPCy are completed and OPD remained incomplete.
‘Ngw interrupt 1 occurs at that instance. The [ calls some function which uses x if x is the global
fiable. It modifies x = b’ y;.......b". On return from interrupt, as OPD, is not complete, OPD,
perates on b’jp;....... b’ g NOt 0N b5y ... bgg.

(b) |Qansider date d and time t. Let d and t be taken in the program as global variables. Assume that a
\theead Update_Time_Date is updating t and d information on system clock tick interrupt /5. The
thtead Display_Time_Date in Example 7.2 displays that t and d information.
'1}4 Assume that when Update_Time_Date ran t = 23:59:59 and date d = 17 July 2007.

2} : The Display_Time_Date gets interrupted and assumes that display d and operation t are non-
| atomic. Display of d was completed but display of t was incomplete when interrupt I occurred.
After a while, the t changes to t = 00:00:00 and d = 18 July 2007 when the thread
1" Update_Time_Date runs. The display will show t = 00:00:00 and date d = 17 July 2007 on the
J; return from interrupt and re-start of blocked thread Display_Time_Date.

& of shared variables d and t in two threads Update_Time_Date and Display_Time_Date

e of the following.
. | An interrupt can occur at the end of an instruction cycle, not at the end of a high-level instruction.
2. | A DMA operation can occur at the end of a machine cycle itself and a compiler or program may not
taking these atomic-level details into account (DMA operation means direct memory access, an 10
device loads into the memory using the system address and data buses when CPU is not performing
any bus-operation).
3.| A context switch operation can occur at the end of an instruction for calling a new function, cycle
" litself and a compiler or program may not be taking into account these atomic-level details.
The following are the steps that, if used together, almost eliminate a likely bug in the program because of
the shgred data problem:

1.| Use modifier volatile with a declaration for a variable that returns from the interrupt. This declaration
warns the compiler that certain variables can modify because the ISR does not consider the fact that
the variable is also shared with a calling function.
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2. Use reentrant functions with atomic instructions in that part of a function that needs its complete
execution before it can be interrupted. This part is called the critical section. For exa ple, the
suboperations of shifting of x in Example 7.15 are in critical section. :

3. Put a shared variable in a circular queue. A function that requires the value of this variabld always
deletes (takes) it from the queue front, and another function, which inserts (writes) the value of this Yariable,
always does so at the queue back. Now a problem can occur in case there are a large number
of functions that post the values into and take the values but the maximum required queue size is not

Example 7.16

Example shows how shared data problem get solved by using queue. Consider the Example 7.15(b).
that variables t for time and d for date are shared variables and there is a queue Qqp, into which g
inserts the shared variables and another thread deletes these variables. [Note: Insertion into a queug
writing a value at the queue tail and then changing the pointer to the queue tail for the next inkh
Deletion from a queue means reading the value
from the queue head and then changing the pointer to the queue head for the next read.]
1. Assume that when Update_Time_Date runs the t = 23:59:59 and date d = 17 July 2007 and serts
these in a queue Qyy,. a0
2. The Display_Time_Date reads t and d from Qqp, and displays. When the thread gets interruptied ifter
reading d, display of d, the Qqp is still holding t when interrupt I5 occurs. Display of t will cé
on return from the interrupt. v H
3. After a while, the t changes to t =00:00:00 and date d = 18 July 2007 and the thread Update_Time} ]
runs and inserts the new values of t and d at the back of the earlier values in Qrp- The display Wil
show d = 17 July 2007 and t = 23:59:59 and on return from the interrupt and in the next cyd
run the thread will show d = 18 July 2007 and t = 00:00:00.
The use of queue for the shared variables d and t in two threads when Update_Time_Date inserts v
these into the queue and Display_Time_Date deletes these from the Qqp causes no display error. ‘

4. Disable the interrupts before a critical section starts executing and enable the interrupts on its completion.
It is a powerful but drastic option. An interrupt, even if of higher priority than the present critical fynction,
gets disabled. Advantage of it is that the semaphore functions have greater computational overhead than
disabling of the interrupt. The difficulty with this option is that it increases in the interrupt latency period for
all the tasks. The latency increases by the time taken in executing the codes of the section. A deadline
missed for an interrupt service by that task which does not share the critical section or the resource.

As an alternative to disabling interrupts, Section 7.7.2 described using of semaphores for the shargd data
problem. A software designer must not use the drastic option of disabling interrupts in all the critical s¢ctions.
[Note: In the OS for automobile applications, the disabling of interrupts is used before entering any [critical
section to avert any unintended action because of improper use of semaphores.] Another alternative ig use of
lock or spin-lock functions in a scheduler. (Section 7.11)

The use of disabling the switching of task from one to another and other steps and use of semgphores
(Section 7.7) must eliminate the shared data problem completely from a multitasking, multi-ISRs and multiple
shared variable cases. Each of the step has its own inherent benefits in solving the problem. A progr
must utilize the various steps optimally suited to solve the problem.

Shared data problem can arise in a system when another higher priority task finishes an operation and ni‘urifgs
the data or a variable. Using reentrant functions, disabling interrupt mechanism, using semaphores ankl
such as mailbox and queue are the solutions which are used for taking care of shared data problem. *
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7.8.3 |Applications of Semaphores and Shared Data Problem

Use of rhutex facilitates mutually exclusive access by two or more processes to the resource (CPU). The same
variable| sem_m, is shared between the various processes. Let process 1 and process 2 share sem_m and its
initial:value = 1.

1. cess 1 proceeds after sem_m decreases and equals O and gets the exclusive access to the CPU.
2. Process 1 ends after sem_m increases and equals 1; process 2 now gets exclusive access to the CPU.
3. Process 2 proceeds after sem_m decreases and equals 0 and gets exclusive access to CPU.

4. Process 2 ends after sem_m increases and equals 1; process 1 now gets the exclusive access to the CPU.
The kem_m is like a resource key and shared data within the processes 1 and 2 is the resource. Whosoever
reases it to 0 at the start gets the access to and prevents the other to run with whom this key shares.

Mu@e Jis a semaphore that provides at an instance two tasks mutually exclusive access to resources and is
used §y solving shared data problem.
[,

‘Elimination of Shared Data Problem

The us of semaphores does not eliminate the shared data problem completely. Software designers may not
drastic option of disabling interrupts in all the critical sections by using semaphores. When using
semaphores, the OS does not disable the interrupts. Alternatively, task-switching flags can be used
idn 8.10.3). The following problems that can arise when using semaphores.

1.| Sharing of two semaphores creates a deadlock problem (Refer to Section 7.8.5).

2.| Suppose the semaphore taken is never released? There should therefore be some time-out mechanism
after which the error message is generated or an appropriate action taken. There is some degree of
. | similarity with the watchdog timer action on a time-out. A watchdog timer on timeout resets the
, | processor. Here, after the time out, the OS reports an error and runs an error-handling function. Without
a time out, an ISR worst-case latency may exceed the deadline.

A semaphore not taken, and another task uses a shared variable.

What happens when a train takes a signal for a wrong track? When using the multiple semaphores, if
| an unintended task takes the semaphore, it creates a problem.

5| There may be priority inversion problem (Refer to Section 7.8.5).

Pl sl

7.8.5 Priority Inversion Problem and Deadlock Situations

Let the priorities of tasks be in an order such that task I is of the highest priority, task J is of a lower and task
K of the lowest. Assume that only tasks [ and K share the data and J does not share data with K. Also let tasks
1 apd K alone share a semaphore and not J. Why do only a few tasks share a semaphore? Can’t all share a
semaphore? The reason is that the worst-case latency becomes too high and may exceed the deadline if all
tasksl are blocked when one task takes a semaphore. The worst-case latency will be small only if the time
takeq by the tasks that share the resources is relevant. Now consider the following situation.

Al an instant t,, suppose task K takes a semaphore, the OS does not block task J and blocks task I. This
happens because only tasks 7 and K share the data and J does not. Consider the problem that now arises on
seledtive sharing between K and I. At the next instant t;, let task K become ready to run first on an interrupt.
Nowj, assume that at the next instant t,, task I becomes ready on an interrupt. At this instant, K is in the critical
sectibn. Therefore, task [ cannot start at this instant due to K being in the critical region. Now, if at next instant
t3,'sz‘me action (event) causes the unblocked higher than the K priority task J to run. After instant.t;, running
task[J does not allow the highest priority task I to run. This is because even though K is not running and thus
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unable to release the semaphore that it shares with 7. Further, the code of task J may be such that even when
the semaphore is released by task K, it may not let / run (J runs the codes as if it is in critical sectiod all the
time). The J action is now as if J has hi gher priority than I. This is because K, after entering the criticalsection
and taking the semaphore when the OS is letting J run, but did not share the priority information about{/~—that
task I is of higher priority than J. The priority information of another higher-priority task / should have also
been inherited by K temporarily, if K waits for / but J does not and J runs when K has still not finished the
critical section codes. This did not happen because the given OS design was such that it did not provide for
temporary priority inheritance in such situations. :
This situation is also called priority inversion problem. An OS must provide for a solution for the priority
inversion problem. Some OSes provide for priority inheritance in these situations and thus priority inhdritance
problem does not occur when using them. Refer to Section 7.7.2 for use of a mutex for resources shati
mutex should be a mutually exclusive Boolean function, by using which the critical section is protec
interruption in such a way that the problem of priority inversion does not arise. Mutex is automatically
in certain RTOS so that the priority inversion problem does not arise. Mutex use may also be just analogi
semaphore defined in Section 7.7.2 in another RTOS and which does not solve the priority inversion
Consider another problem. Assume the following situation.

1. Let the priorities of tasks be such that task H is of highest priority. Then task / has a lower priorjty and
task J has the lowest.

2. There are two semaphores, SemTokl and SemTok2. This is because the tasks 7 and H have a phared
resource through SemTok! only. Tasks 7 and J have two shared resources through two semaghores,
SemTokl and SemTok2.

3. Let J interrupt at an instant t, and first take both the semaphores SemTok] and SemTok2 and ryn.

Assume that at a next instant t;, being now of a higher priority, the task H interrupts the tasks 7 and J hfter it
takes the semaphore SemTok1, and thus blocks both 7 and J. In-between the time interval t, and t,, the SepTok]
was released but SemTok2 was not released during the run of task J. But the latter did not matter as the tas Tand
J do not share SemTok2. At an instant t,, if H now releases the SemTok] , allows the task / to take it. Even then it
cannot run because it is also waiting for task J to release the SemTok2. The task J is waiting at a next insfant t;,
for either H or I to release the SemTokl because it needs this to again enter a critical section. Neither task I can
run after instant t; nor task J. There is a circular dependency established between I and J.

This situation is also called a deadlock situation. On the interrupt by H, the task J, before exiting fram the
running state, should have been put in queue-front so that later on, it should first take SemTok] , and the task
I put in queue next for the same token, the deadlock would not have occurred (refer to Section 7.12 for
queuing of messages). :

The use of mutex solves the deadlock problem in certain OSes. Its use may be just analogous to a semaphore
defined in Section 7.2.1. In other OSes, the mutex use may not solve the deadlock situation.

us$ to a
blem.

Priority becomes inverted and deadlock (circular dependency) develops in certain situations when
semaphores. Certain OSes provide the solution to this problem of semaphore use by ensuring that ‘
situations do not arise during the concurrent processing of multitasking operations. M i

= 7.9  INTERPROCESS COMMUNICATION

Is it possible to send through the kernel an output data (a message of a known size with or without a helzder)
Jor processing by another task? One way is the use of global variables. Use of these now creates two prob.
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One is|the shared data problem (Section 7.8). The other problem is that the global variables do not prevent
(encapjulate) a message from being accessed by other tasks.
IPCk in a multiprocessor system are used to generate information about certain sets of computations finishing on
one pracessor and to let the other processors waiting for finishing those computations take note of the information.
IPOmeans that a process (scheduler, task or ISR) generates some information by signal or value or generates
an outgut so that it allows another process to take note or use it through the kernel functions for the IPCs. IPCs
in a myltitasking system are used to set or reset a signal or token or flag or generate message from the certain
sets of jcomputations finishing on one task and to let the other tasks take note of the signal or get the message.
OSg¢s provide the software programmer the following IPC functions, which can be used.
1. | Signals
2. | Semaphores as token or mutex or counting semaphores for the intertask communication between tasks
sharing a common buffer or operations
3. | Queues and mailboxes
4. | Pipes and sockets
5. | Remote procedure calls (RPCs) for distributed processes.
Seckion 7.7 described two IPC functions, OSSemPend () and OSSemPost ( ) and use of semaphores for the
IPCs. The following shows an application for the printing from buffer by a task.

Example 7.17
Cok fder usmg a mutex semaphore i in the tasks whnch needs to use the prmt for the buffer data from one

shdu} i let the other tasks share this task. The prmt task can be shared among the multiple tasks which use
e jatex semaphore IPCs in their critical sections.
hen the printer buffer becomes available for new data, an IPC from the print task is generated and

function of the kernel used at the beginning of the critical section and the task gets mutually
exdiysive access to the section to send messages into the print buffer by using the OSSemPost ()
con of the kernel at the end of the section (Sections 7.7.2, 7.8.3 and 7.11.1).

E nple 7.18

mql' e dlsplay task finishes the display of the last but one line, an IPC semaphore supdateTD from the
display task is generated and the kernel takes note of it. The task—continuously updating time—then can
take the supdateTD and generate an IPC as a mailbox output for the current time and date.

‘When the task for updating time t on a signal posted on system clock-tick interrupt g starts, on taking the
supdleTD posted by the Task_Display, it can write the td into a mailbox using an IPC for posting mailbox
meksage, timeDate.

‘Aksume OSSemPost ( ) is an OS IPC function for posting a semaphore and assume OSSemPend ( )
sther OS IPC function for waiting for the semaphore. Let supdateTD be the binary semaphore
d at Task_Display and pending at Task_Display section for displaying t and d. Let supdateTD initial
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Let the IPC function be OSMboxPost ( ) for posting the mailbox IPC message from Update._Time tagk and
OSMboxPend ( ) for waiting for the mailbox IPC at Task_Display section. Let timeDate initial value‘ ﬁull.
The following will be the codes:

static void Task_Display (void *taskPointer) {

;;vhile a{

P A e g

/* IPC for waiting time and date in the mailbox */ i
TimeDateMsg = OSMboxPend (timeDate) /* Wait for the mailbox message timeDate. The timeDate es
null after the mailbox is posted time and date by Task_ Update Time and TlmeDateMsg eq s? the
updated time and date */

/* Code for display TimeDateMsg Time: hr:mm Date: month:date */ : ' »’ !
[

S

/* IPC for requesting TimeDate */ ‘ 3
OSSemPost (supdateTD) /* Post for the semaphore supdateTD. supdateTD becomes 1 a
) 11
static void Task_ Update_Time (void *taskPointer) {

OSSemPend (supdateTD) /* Wait the semaphore supdateTD. This means that OS function decre
supdateTD in corresponding event control block. supdateT becomes 0 */ b

/* Codes for updating time and date as per the number of clock interrupts received so far */ it

/* Codes for writing into the mailbox */ :

OSMboxPost (timeDate) /* Post for the mailbox message and timeDate, which equaled null
now equals newupdated time and date*/

while (1) { /* wait for system clock inter interrupt signal or semaphore notification from ISR of Ing/

IS

The need for IPC and thus intertask communications also arises in a client-server network.

IPC means that a process (scheduler or task or ISR) generates some information by setting or resétting a
token or value, or generates an output so that it lets another process take note or use it under the contgol of

OS. , ' i 4
i
oW '*_"‘"E"""?“’ I T T T e T Y o~
7.9 CRER OO

One way for messaging is to use an OS function signal (). It is provided in Unix, Linux and several RfQSes.
Unix and Linux OSes use signals profusely and have 31 different types of signals for the various Events.
Section 9.3 will describe signal in VxWorks RTOS. Just a hardware mechanism sends the interrupt to hé OS,
task (or process) or the OS itself sends signal. The task or process sending the signal uses a fyngtion
signal () having an integer number n in the argument. A signal is function, which executes a sofiware terrupt
instruction INT n or SWI n.
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A ‘gignal’ provides the shortest communication. The signal () sends a output n for a process, which enables
the 0810 unmask a signal mask of a process or task as per the n. The task is called signal handler and has coding
similar| to the ones in an ISR. The handler runs in a way similar to a highest priority ISR. An ISR runs on an
hardwdre interrupt provided that the interrupt is not masked. The handler runs on the signal provided that the
signdl §s not masked.

The signal ( ) forces the OS to first run a signalled process or task called signal handler. When there is
returh ffrom the signalled or forced task or process, the process, which sent the signal, runs the codes as
happens on a return from an ISR. A signal mask is the software equivalent of the flag at a register that sets on
maskin)g a hardware interrupt. Unless masked by a signal mask, the signal allows the execution of the signal-
handlifg function and allows the handler to run just as a hardware interrupt allows the execution of an ISR.
nteger number (for example n) represents each signal and that number associates a function (or process
signal handler, an equivalent of the ISR. The signal handler has a function called whenever a process
commynicates that number.

A signal handler is not called directly by a code. When the signal is sent from a process, OS interrupts the
process execution and calls the function for signal handling. On return from the signal handler, the process
continges as before.

For] example, signal (5). The signal mask of signal handler 5 is reset. The signal handler and connect
functign associate the number 5. The function represented by number 5 is forced run by the signal handler.

A advantage of using it is that unlike semaphores it takes the shortest possible CPU time to force a
handler to run. The signals are the interrupts that can be used as the IPC functions of synchronizing.

A signal is unlike the semaphore. The semaphore has use as a token or resource key to let another task
process block, or which locks a resource to a particular task process for a given section of the codes. A signal
is just|an interrupt that is shared and used by another interrupt-servicing process. A signal raised by one
process forces another process (signal handler) to interrupt and catch that signal in case the signal is not
masked (use of that signal handler is not disabled). Signals are to be handled only for forcing the run of very
high piority processes as it may disrupt the usual schedule and priority inheritance mechanism. It may also
cause feentrancy problems.

Anlimportant application of the signals is to handle exceptions. (An exception is a process that is executed
on a specific reported run-time condition.) A signal reports an error (called ‘exception’) during the running of
a task|and then lets the scheduler initiate an error-handling process or function or task. An error-handling
signal/handler handles the different error login of other task. The device driver functions also use the signals
to call the handlers (ISRs).

Thé following are the signal related IPC functions, which are generally not provided in the RTOS such as
pCOSHI and provided in RTOS such as VxWorks or OS such as Unix and Linux.

1.| SigHandler () to create a signal handler corresponding to a signal identified by the signal number and
define a pointer to the signal context. The signal context saves the registers on signal.
Connect an interrupt vector to a signal number, with signalled handler function and signal-handler
arguments. The interrupt vector provides the PC value for the signal-handler function address.
3, A function signal ( ) to send a signal identified by a number in the argument to a task.
4| Mask the signal.
54 Unmask the signal.
6. Ignore the signal.

N

he simplest IPC for messaging from processes that forces a handler function to run (provided unmasked)
‘the use of ‘signal’. '
f ‘signal’ provides the shortest communication. Signals are used for initiating exceptions and error-
gndling processes. ‘
'C function for a signal is signal (n) for signalling signal-handler associated with n to run if not masked.
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1 SEMAPHORE FUNCTIONS

The OS provides for semaphore as notice or token for an event occurrence. Semaphore facilitates
notifying (through a scheduler) a waiting task section change to the running state upon event at
running code section at an ISR or task. A semaphore as binary semaphore is a token or reso
(Sections 7.7.1 and 7.7.2). The OS also provides for mutex access to a set of codes in a task (or

in some OSes while it is solved in other OSes. The OS also provides for counting semaphores. The
provide for POSIX standard P and V semaphores which can be used for notifying event occurre
mutex or for counting. The timeout can be defined in the argument with wait function for the semaph
The error pomter can also be deﬁned in the arguments for semaphore IPC functions.

semaphores.
1. OSSemCreate, a semaphore function to create the semaphore in an event control block (ECB).

it with an initial value. '

2. OSSemPost, a function which sends the semaphore notification to ECB and its value increménts on

3. OSSemPend, a function, which waits the semaphore from an event, and its value decrements o Qking

occurrence of an event (by non-zero value) then it takes note of that and decrements that v
wait; used in ISRs as well as tasks).

5. OSSemQuery, a function, which queries the semaphore for an event occurrence or non-occ
reading its value and returns the present semaphore value, and returns pointer to the data s
OSSemData. The semaphore value does not decrease. The OSSemData points to the presen
and table of the tasks waiting for the semaphore (used in tasks).

An OS provides the IPC functions create, post, pend, accept and query for using semaphores. The t;z&mt
can be provided with pend’ function arguments. A pointer to error-handling function can also be s

in the arguments. e

7.11.1 Mutex, Lock and Spin Lock

An OS, using a mutex blocks a critical section in a task on taking the mutex by another task’s critical
Other task unlocks on releasing the mutex. The mutex wait by blocked task can be for a specified timeout.

is a powerful tool in the situation described before. [Refer to ‘Multithreaded Programming with Jayva’ by
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Bil Léwis and Daniel J. Berg, Sun Microsystems Inc., 2000.] The scheduler locking process for a task /
waits {n a loop to cause the blocking of the running task first for a time interval t, then for (t - t), then (t - 28t)
and sd on. When this time interval spin-downs to 0, the task that requested the lock of the processor now unlocks
the ing task J and blocks it from further running. The request is now granted to task J to unlock and start
runnirjg provided that task is of higher priority. A spin lock does not let a running task to be blocked instantly, but
first skccessively tries with or without decreasing the trial periods before finally blocking a task. A spin-lock
need of context-switching by pre-emption and use of mutex function-calls to OS.

provides the IPC functions for creating and accessing the resource using mutex for a process and to
t the resource for the other processes. An OS may also provides for lock or spin-locks at the scheduler.

'7@% MESSAGE QUEUE FUNCTIONS

Some| OSes do not distinguish, or make little distinction, between the use of queues, pipes and mailboxes
during the message communication among processes, while other OSes regard the use of queues as different.
A message queue is an IPC with the following features.
1/ An OS provides for inserting and deleting the message pointers or messages.
Each queue for the message or message-pointers needs initialization (creation) before using functions
in kernel for the queue.
Each created queue has an ID.
Each queue has a user-definable size (upper limits for number of bytes).
When an OS call is to insert a message into the queue, the bytes are as per the pointed number of bytes.
For example, for an integer or float variable as a pointer, there will be 4 bytes inserted per call. If the
pointer is for an array of eight integers, then 32 bytes will be inserted into the queue. When a message-
pointer is inserted into queue, the 4 bytes inserts, assuming 32-bit addresses.
6/ When a queue becomes full, there is error handling function to handle that.
Figure 7.8(a) shows functions for the queues in the OS. Figure 7.8(b) shows a queue-message block with the
me: s or message-pointers. Two pointers, *QHEAD and *QTAIL are for queue head and tail memory locations.
;ﬁeos functions for a queue, for example, in pCOS-II, can be as follows:
1} OSQCreate, a function that creates a queue and initializes the queue.
2l OSQPost, a function that sends a message into the queue as per the queue tail pointer, it can be used by
tasks as well as ISRs.
3| The OSQPend waits for a queue message at the queue and reads and deletes that when received (wait,
used by tasks only, not used by ISRs).
4, OSQAccept deletes the present message at queue head after checking its presence yes or no and after
the deletion the queue head pointer increments. (no wait; used by ISRs as well as tasks)
5| OSQFlush deletes the messages from queue head to tail. After the flush the queue head and tail points
to QTop, which is the pointer at start of the queuing. (used by ISRs and tasks)

"6, OSQQuery queries the queue message block but the message is not deleted. The function returns
pointer to the message queue *Qhead if there are the messages in the queue or else returns NULL. It
returns a pointer to the structure of the queue data structure for *QHEAD, number of queued messages,
size and table of tasks waiting for the messages from the queue. (query is used in tasks)

7. OSQPostFront sends a message to front pointer, *XQHEAD. Use of this function is made in the following
situations. A message is urgent or is of higher priority than all the previously posted message into the
queue (used in ISRs and tasks).

A~ W
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(b) Queue message block in memory

Example 7.19

Consider Orchestra Playing Robots (Example 1.10.7). Task_Director_Output puts the musical notef
the queue at conducting and directing robot. OSQEntries equals the number of queue entries and OS

equals the maximum number of notes that can be put into the queue.

static void Task_Director_Qutput (void *taskPointer) {

while (1) {

/* Codes for inserting musical notes into the queue */
for (OSQEntries = 0; OSQEntries < OSQSize; OSQEntries ++)

{OSQPost (QDirector, note)} /* Post for the Queue QDirector messages upto the OSQSize /*

)

static void Task_Player_Input (void *taskPointer) {

while (1) {

~ Ltail
Qend

Fig. 7.8 (a) OS functions for queue and use of post and wait functions by Tasks A

Embedded sydms
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s for deleting notes from the queue */
for {(OSQEntries = OSQSize; OSQEntries >0 ; OSQEntries --)
noté () = OSQPend (QDirector, 0, err) /* wait for the message */

In certain RTOS, a queue is given select option and the option is provided for priority or FIFO. The task
having priority if started deletes a queue message first in case the priority option is selected. The task pending
since 1gnger period deletes a queue message first in case the FIFO option is selected.

An bgprovides the IPC functions create, post, postfront, pend, accept, flush and query for using message
quei‘l ds. The timeout can be provided with ‘pend’ function argument. The error-pointer can also be provided

A message-mailbox is for an IPC message that can be used only by a single destined task. The mailbox
message is a message-pointer or can be a message. (WCOS-II provides for sending message-pointer into the
box). The source (mail sender) is the task that sends the message pointer to a created (initialized) mailbox (the
box inikially has the NULL pointer before the message posts into the box). The destination is the place where
MBoxPend function waits for the mailbox message and reads it when received.

‘njobile phone LCD display task is an example that uses the message mailboxes as an IPC. In the mailbox,
when the time and date message from a clock-process arrives, the time is displayed at side corner on top line. When
the mefsage from anther task to display a phone number, it is displayed the number at middle at a line. When the
message from anther task to display the signal strength at antenna, it is displayed at the vertical bar on the left.
ndther example of using a mailbox is the mailbox for an error-handling task, which handles the different
error, 1ogins from other tasks.

Figare 7.9(a) shows three mailbox-types at the different RTOSes. Figure 7.9(b) shows the initialization
her functions for a mailbox at an OS. The following may be the provisions at an OS for IPC functions
when wsing the mailbox.

1.| A task may put into the mailbox only a pointer to the message-block or number of message bytes as per
the OS provisioning.
2.| There are three types of the mailbox provisions.

A queue (Section 7.12) may be assumed a special case of a mailbox with provision for multiple messages
or megsage pointers. An OS can provide for queue from which a read (deletion) can be on a FIFO basis or
altendtively an OS can provide for the multiple mailbox messages with each message having a priority
paramgter. The read (deletion) can then only be on priority basis in case mailbox message has multiple messages
with griority assigned to high priority ones. Even if the messages are inserted in a different priority, the
deletign is as per the assigned priority parameter.

AnlOS may provision for mailbox and queue separately. A mailbox will permit one message pointer per box
and the queue will permit multiple messages or message pointers. pCOS-II RTOS is an example of such an OS.

The RTOS functions for mailbox for the use by the tasks can be the following:
1.| OSMBoxCreate creates a box and initializes the mailbox contents with a NULL pointer.

2.l OSMBoxPost sends (writes) a message to the box.
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Mailbox Type
Permitted by an OS
f J ]

Multiple One Message Muttiple
Unlimited Per Mailbox Messages
Messages with a Priority
Queusing Parameter for
Up (a) each message

OS Functions for the Mailbox

I
r I T T 1

Create Wirite Accept Read Query
(Post) ) (Pend)

Fig. 7.9 (a) Mailbox types at the different operating systems (OSes) (b) Initialization and|other
functions for a mailbox at an OS

3. OSMBoxWait (pend) waits for a mailbox message, which is read when received.

4. OSMBoxAccept reads the current message pointer after checking the presence yes or no (nq wait).

Deletes the mailbox when read. '

5. OSMBoxQuery queries the mailbox when read and not needed later.
An ISR can post (but not wait) into the mailbox of a task.

Example 7.20 a

(a) Consider an AVCM (Section 1.10.2). Assume that a message pointer IPC posts into the mail , 
amount collected by Task Read_Amount and the Chocolate_delivery_task section waits for taking messaf
the mailbox to make the amount equal to NULL after delivering the chocolate. Assume mboxAmt is a f
to mailbox and fullAmount is a string full amount which should be made NULL after delivering the chol Hte.
OSMboxPost (mboxAmt, full Amount) is an OS IPC function for posting a message pointer into the mé
and assume OSSemPend () is another OS IPC function for waiting for the message pointer, fullAma

(b) Also assume that the OSMboxPost ( ) is also used by keypad for posting the mailbox IPC
for userInput into mailbox mboxUser from Task User Keypad Input and OSMboxPend ( ) for waititle'
userInput for display. A mailbox IPC ‘pend’ is for mboxUser message in Task_Display.

The following will be the codes for (a) and (b). A

(@) static void Task Read_Amount (void *taskPointer) { a

while (1) {

/* Codes for reading the coins inserted into the machine */
/* Codes for writing into the mailbox full amount message if cost of chocolate is received*/ ;
OSMboxPost (mboxAmt, fullAmount) /* Post for the mailbox message and fullAmount, which e@ayed

NULL now equals fullAmount */

)

static void Chocolate_delivery_task (void *taskPointer) {

while (1) {
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i requesting full amount ma<<age */
fullAmokntMsg = OSMboxPend (mboxAmt, 20, *err) /* Wait for the mailbox mboxAmt message for
2D ¢lock-ticks and error if message not found. mboxAmt becomes NULL after message is read.

/* Cotlds for writing into the mailbox */

baxPost (mboxUser, userlnput) /* Post for the mailbox message and userInput, which equaled NULL
now equals userInput */

'}. i 4 )

static“voigd Task_Display (void *taskPointer) {

o

1 1P€ for waiting for User input message */

UserlngatMsg = OSMboxPend (mboxUser, 20, *err) /* Wait for the mailbox mboxUser
thdssage for 20 clock ticks and error if message not found. mboxUser becomes null after

message is read.

for display of user Input */ ' o k :

feMsg = OSMboxPend (timeDate, 20, err) /* Wait for the mailbox message timeDate.

¢§for display TimeDateMsg Time: hr:mm Date: month:date */ :

An QS}provides the IPC functions create, post, pend, accept and query for using the mailbox. The time-
out and error-pointer can be provided with the ‘pend’ function arguments.

the ones| used for devices such as file.

A méssage-pipe is a device for inserting (writing) and deleting (reading) from that between two given
interconhected tasks or two sets of tasks. Writing and reading from a pipe is like using a C command fwrite
with a file name to write into a named file, and fread with a file name to read from a named file. Pipes are also
like Javi PipelnputOutputStreams. .
task using the function fwrite in a set of tasks, can insert (write) fo a pipe at the back pointer
ss, *pBACK.

2. ther task using the function fread in a set of tasks can delete (read) from a pipe at the front pointer
ess, *pFRONT.
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3.

4.

An example of the need for messaging and thus for IPC using a pipe is a network stack.
The OS functions for pipe are the following:

1.
2.

3.
4.

In a pipe there may be no fixed number of bytes per message but there is end-pointer. A bipe can
therefore be inserted limited number of bytes and have a variable number of bytes per message between
the initial and final pointers. "
Pipe is unidirectional. One thread or task inserts into it and the other one deletes from it.

pipeDevCreate for creating a device, which functions as pipe.

open () for opening the device to enable its use from beginning of its allocated buffer, its
options and restrictions (or permissions) defined at the time of opening.

connect () for connecting a thread or task inserting bytes to the thread or task deleting bytes from
write () function for inserting (writing) from the bottom of the empty memory space in
allotted to it.

read (') function for deleting (reading) from the pipe from the bottom of the unread memory
the buffer filled after writing 1nt0 the plpe

opening it again.

Figure 7.10(a) shows functions at an OS. A function is for initialization and creating a pipe. It defipes pipe

ID, length, maximum length (not defined in some OSes) and initial values of two pointers. These are *
and *pBACK for pipe message destination (head) and pipe message source (tail) memory locations, res|

A function is for pipe connecting and thus defining source ID and destination ID. A function is for e error

handling. Figure 7.10(b) shows pipe messages in a message buffer.
OS device driver
functions for pipe
Task A fup_ctipn fpr pipedevice connect
Initialization of Create () - a pipe
a pipe device device
. between !
function for ———{ open () source
opening a . and sink
write pipe for write ()
' D, messages
ﬁis?)— (byte streams) read ()
i i lose the
functions for pipe cl
Created inserting connect ( ) (< pipe 1
p'pe fOfbyte message close ( ) e device ;
stream of (bytes) Error
messages i pipe device <= handling
at a memory function for Eror () function
block - deleting (read) i
(a)
pipe open _ B
* — pipe to ;
Messages (byte stream) at pipe PFRONT p
device memory buffer for writing i i Last writen
(insertion) and reading (deletion b S e (inserted)
without wait) as FIFO (first-in first-out) Q:’a?iﬁ';‘?o?y“’ byte at *pBA(
read (deletion) L pipe end
(b)
Fig. 7.10 (a) Functions at operating system (initialization, connect, read, write and error- hindling
functions) and the use of write and read functions by tasks A and B (b) Pipe messhges in
a message buffer




pipeIpevCreate ( “/pipe/pipeCardInfo”, 4, 32) /* Create a pipe pzpeCardInfo, whlch can save four messages
gich of 32 bytes maximum */
pen (( “/pzpe/ptpeCaniInfo ” O WR, 0) /* Open a write on]y devnce First argument is pipe ID /pipe/

statidvoid Task_Send_Card_Info (void *taskPointer) {

whild (D) {

v bt

4

ot

carfi §eansactionNum = 0; /* At start of the transactions with the machine*/

ije gm cardTransactionNum, 1) /* Write 1 byte for transaction number after card mscmon */
ijex(fd, cardFabricationkey, 16) /* Write 16 bytes for fabrication key */

wnte (fd cardPersonalisationkey, 16) /* Write 16 bytes for personalisation key */

(fd cardPIN, 16) /* Write 16 bytes for PIN, personal identification number

granted by the authorising bank */

om the stream by another process. However, the use of pipe between a process at the card and a
at the host will have the following problems.

1. | We need the card information to be transferred from a process A as bytes stream to the host machine
process B and the B sends messages as bytes stream to A. There is need for bi-directional communication
. |between A and B.

2. | We need the A and B’s ID or port as well as address information when communicating. These must be
specified either for the destination alone or for both source and destination (It is similar to sending the
messages in a letter along with address specification).




|
!
I S

checksum for the header-bytes. Port means a process or task for specific application. The gumber
specifies the process. Connectionless means there is no connection establishment between so
destination before actual transfer of data stream can take place. Datagram means a set of dal
is independent and need not be in sequence with the previously sent data. Checksum is su
bytes to enable the checking of the erroneous data transfer. For remote communication, the
for example, IP address is also required in the header. »
2. There may be the need of using a connection-oriented protocol, for example, TCP. Connection

protocol means a protocol, which provides that there must first a connection establishment
the source and destination, and then the actual transfer of data stream can take place. At e
must be connection termination.

Socket provides a device-like mechanism for bi-direction communication. It provides for using a

header. The transfer is between two or between the multiple clients and server-process. Each socket
the task source address (similar to a network or IP address) and a port (similar to a process or thread)

shows the initialized sockets between the client set of tasks and a server set of tasks at an OS.

Example 7.22

Assume that using the OS socket functions, a socket interconnects a byte stream between the source pef
processes I and destination targeted set of processes J. Let there be the four process threads: a, b, ¢ ag

process set 1. There are two threads, x and y in a set of processes, J. Let the socket be used to sendv
stream from (process set /, process thread c) to a (process set J, process thread x). Now, the socket
source (process 1 socket) is specified as the socket at (Z, ¢) and socket at the process 2 as the sock
(J, x). When the bytes are sent or received at the socket at (/, ¢) from or to the socket at (J, x), the protoc]
specifies (1, ¢) and (J, x). The protocol may also specify the length of the bytes being communicated.
The protocol may also specify the checksum of the bytes being communicated so that if any bitis 6
lost in communication to remote then retransmission request can be sent.
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i Task B 0S device driver functions for the client and server sockets
A at clent Croated socketdevice | | server socket
i i read socket for creats socket ( ) device -
it (socket, |, | byte streams untink () create socket () -
il | msg) of messages bind () bind ()
i ‘;mte at server listen () connect ( )
{ !’wr“' socket | accept () ‘send ()
I jnsa) “dovios: Created receive () receive ()
e socket for send () read ( )
s b - byte streams - write ()
B atsarver of messages write ()
andclent [~ | at client read () unlink () -
Client uses bind, send, receive functions, and server sh: utd((w)m O dosel A I(') 0
s bind, receive and send functions in UDP like :
nnection-less protocol socket error () * socket error ()
server client

nt uses connect, read, write functions, and server uses
d, listen, accept, write and read functions in TCP like
nection-oriented protocol

(a)
client socket open
ssages (byte stream) at socket device Last written
ih server memory for writing (insertion) (inserted)
sing server socket and for reading A written b t byte at the
: |etiop) as FIFO (first-in first-out) servere:ockyttaet \?vaiting server socket
sing client socket memory for listen, read, accept,
receive at client socket
(b)

Fig. 7;.11 (a) Initialized virtual sockets between the client set of tasks and a server set of tasks and
: the operating system provisions for the socket-functions (b) Byte stream between client

and server

Exarpple 7.23

r orchestra-playing robots (Example 1.5.7).

process, Task_Master in the director - oot creates a socket using a statement as follows:

fd1 = socket (“/socket/serversocket]”, playStream, 0).

he sfd1 is an unsigned integer for a socket descriptor. “/socket/serversocket1” is the path and file
om which the stream, playStream will be sent or received from play robots. O represents unrestricted
grmission to use the file.

hsk_Master socket binds the sfd1 and data structure at the socket address, sockAddr by using the
unction as follows: CETRE et e e e BRI T :

ind (sfd1, (struct sockaddr *)&local, 1Bytes). -

he IBytes is length of the bytes in the play stream;

k_Master socket listens to eight orchestra-playing robots by using function as follows:

Sten (sfdl, 8) ‘ : '

k_Master socket accepts bytes (from a playing robot process socket) from the socket with descriptor
d2 using function as follows: sfd2 = accept (sfdl, &playRobotSockAddress, &playRIBytes)

Congi



10.

11.

"'~ are to be received. Bytes are received in playBuffer */

Application of sockets are as follows:
1.

2.
3.
4.

The OS functions for socket in Unix are as following.
1.

2.

. Task_Master socket sends the bytes by using the function as follows:

- the function as follows:
. Task_Master socket closes the sockct by usmg a functxon -as follows:
v close ( )i

‘ sde = socket (“/socket/chentsocketl” sockStream 0) o f

permission to use the file.

send (sfd2, & ackBuffer, playRIBytes, 0); /* Send total ackstreamlen bytes from ackBuffer,;

The &playR1Bytes refers to address for the maximum length of bytes from the playing ta The
playRobotSockAddres is the address of the data structure for the client (playing robot) s t.

send (sfd2, & playBuffer playstreamlen 0); /* Send total playstreamlen bytes from playBu
the socket sfd2.
Task_Master socket receives the bytes from the playmg robots (e.g., for acknowledgement) ;

while (streamlength > 0 && su'camlength <= plaleBytes) {streamlength tecv (sfd2, &
200, 0)};/* Therecv () returns —1 if no more bytes are to be received. Bytes are received i in ackB

The sfd2 is an unsigned-integer-for a socket descriptor. socket/serversocketl’ is the path d file
from which stream, socStream will be sent or recewed from play robots. 0 represents u e

Task_Client socket connects the sfdl and data structure at the socket address, sockClientA
using the function at the server process as follows:
connect (sfd2, (struct sockClientaddr *)&remote, CliBytes).

The CliBytes is maximum length of the bytes in the play stream. #
Task_Client socket sends the acknowledgement bytes by using the function as follows:

using the socket sfd.

Task_Client socket receives the bytes from the playing robots (e.g., for
acknowledgement) by using the function as follows:

while (streamlength > 0 && streamlength < = playstreamlen) { streamlength
= recv (sfd2, &playBuffer, 200, 0)}; /* The recv () returns -1 if no more bytes

An application of sockets is to connect the tasks in the distributed environiient of embedded dystems.
For example, a network interconnection or a card process connects a host-machine process.
A TCP/IP socket is another common application for the Internet. Another exemplary application of
socket is a task receiving a byte stream of TCP/IP protocol at a mobile internet connection.
An exemplary application is when a task writes into a file at a computer or at a network using NFS
protocol (network file system protocol).
Another application of the socket is the interconnection of a task or a section in a source set jof tasks
in an embedded system with another task at a destined set of tasks. The kernel has the socket-copnecting
functions with the codes specifying the source and destination sets and tasks.

The socket () [in place of open () in case of pipe] gives a socket descriptor sfd. The socket ( )enables
its use from beginning of its allocated buffer at the socket address, its use with option and resfrictions
or permissions defined at the time of opening. A socket can be a stream, SOCK_STREAM pr UDP
datagram SOCK_DGRAM.

The unlink ( ) before the bind ().
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3.| The bind ( ) for binding a thread or task inserting bytes into the socket to the thread or task and deleting
: | bytes from the socket. bind () the socket descriptor to an address in the Unix domain. bind (sfd, (struct
sockaddr *)&local, len); where len is string length. sockaddr is a data structure with a record of 16-bit
unsigned num and a path for the file and a data structure struct sockaddr_un {unsigned short num;

i | char path[108]; }

4.| The listen (sfd, 16 ) function for listening 16 queued connections from the client socket.

5.| The accept () accepts the client connection and gives a second socket descriptor.

6. The recv () function for deleting (reading) and receiving from the socket from the bottom of unread
memory spaces in buffer. The buffer has messages after writing into the socket.

7. The send ( ) function for inserting (writing) and sending from the socket from the bottom of the
: | memory spaces in the buffer filled after writing into the socket.

8| The close ( ) for closing the device to enable its use from beginning of its allocated buffer only after
opening it again.

y "}Socket is.an IPC for sendmg a byte stream or datagram from one or nmltrple task. sockets to another

es. Datagram provide protocol-header bytes along with the byte stream.

' The sockets can be a client-server set of sockets (multiple processes and single server prooess) or peer-
h-peer sockets IPC. A socket has a number of applications. An Internet connection socket is for virtual

pnnection between two ports: one port at an IP address to another port at another IP-address.

An OS provides the IPC functions for creating socket, unlinking, binding, listening, accepting, receiving,

Jending and closing.

ocesses. It is used in the cases of distributed tasks.

e OS can provide for the use of RPCs. These permit distributed environment for the embedded systems.
provides the IPC when a task is at system 1 and another task is at system 2. Both systems work in the
peer-fo-peer communication mode. Each system in peer-to-peer can make RPCs. The OS IPC function allows
a fun¢tion or method to run at another address space of shared network or an other remote computer The

'\f A process is a computational unit that processes ona CPU under the state-control of a kemel in OS.

b ﬁpmcess may consist of muluple threads that define thread as a minimum unit for a scheduler to schedule it to run
" Hhe CPU and provide other system resources. Unix provides for processes ‘and their threads as light-weight processes.

i hght weight mean ‘functions not dependent on funcuons like memory-manageiment functions. Java use the threads.

? ?\ single 'CPU system runs one process (or one thread of a process) aI a trme A scheduler is a must to schedule.a
4 mulutaskmg or multithreading system. ; :
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* A ask is a computational unit or set of codes, actions or functions that processes on a CPU under the state<dontrol
of a kernel in OS. i

* A task is similar to a process or thread. Each task is an independent process that takes control of the CP!
scheduled by a scheduler at an OS. No task can call another task. Each task and its state is recognized by it TCB
(memory block) that holds information of the PC, memory map, the signal (message) dispatch table, signal
task ID, CPU state (registers and so on) and a kernel stack (for executing system calls and so on). A task m
of the four states: idle, ready, blocked and running; that are controlled by the scheduler.

mutex or counting semaphores) is another efficient way for solving the shared data problem and running itical
section codes. Use of lock functions and spin-locks are also provided in the OSes. i

computer. The bounded buffer problem is of synchronizing the source and sink. A producer cannot ldep on
producing beyond a limit if consumers do not consume. The consumers cannot keep consuming unless the p g
keeps producing. Counting semaphores provide solution to this problem. ¢
¢ There has been POSIX IEEE standardization of the OS and IPC functions, for example, the P and V sensd
POSIX functions. These function are event notifying, resource key, mutex and counting semaphores. 4
* The priority inversion problem and deadlock situation can arise in certain situations when using a semaphife.

OS should be such that it can take care of it by having the appropriate provisions to avoid these situations. Certain
OSes provide mutex semaphores such that priority inversion problem does not arise.

» The OS functions handle IPCs between the muluple tasks.

* The sockets are used in networks or client-server-like communication between the tasks using functions a8
for the devices. The RPCs are used for the case of distributed tasks.

£
‘ Keywords and their Definitions i

Buffer : A memory block for a queue or network stack or pipe or stream of bytes
an output source and input sink, for example, between the tasks, files, cos
and printer, physical devices and network.

Counting semaphore : A semaphore in which the value of which can be initialized to an 8- or 6
‘ 32-bit integer and that is decremented and incremented. A task does not b
its value is found to be >0 and the task blocks if its value is found tobe;_ . |

Critical section : A section in a task the execution of which should block execution of 3
| such section in another task, for example, when a buffer in printer 1s 1
‘ between two or more tasks.
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A task waiting for the release of a semaphore from a task and another a different
task waiting for another semaphore release to run. None of these is able to
proceed further due to circular dependency. An OS can take care of this by
appropriate provisions.

A mechanism from one task (or process) sending signal or messages or event
notification from one task to the system and which the OS communicates to
another task. Using IPC mechanism and functions a task uses signals, exceptions,
semaphores, queues, mailboxes, pipes, sockets and RPCs.

A message(s) from a task that is addressed for another task.

A task sending the multiple messages into a queue for use by another task(s)
using queue messages as an input.

The special variable and mechanism used to take note of certain actions to prevent
any task or process from proceeding further and at the same time Jet another
task exclusively proceed further. Mutex helps in mutual exclusion of one task
with respect to another by a scheduler in the multitasking operations.

The semaphore functions defined in a POSIX IEEE standard to be used as event
notification or mutex or counting semaphore, or.to solve the classical producer—
consumer problem when using a bounded buffer.

A device for use by the task for sending the messages and another task using the
device receives the messages as stream.-A pipe is a unidirectional device.

A problem in which a low priority task inadvertently does not release the process
for a higher priority task. An operating system can take care of this by appropriate
provisions.

A code that has its independent PC values and an independent stack. A single
CPU system runs one process (or one thread of a process) at a time. A process
is a concept (abstraction). It defines a sequentially executing (running) program
and its state. A state, during the running of d process, is represented by its status
(running, blocked or finished), its control block, called process control block
(PCB) or process structure, its data, objects and resources.

A method used for connecting two remotely placed methods by first using a
protocol for connecting the processes. It is used in the cases of distributed tasks.

A special variable operated by the OS functions which are used to take note of
certain actions to prevent another task or process from proceeding further.

If a variable is used in two different processes (tasks) and if another task interrupts
before the operation on that data is completed, then the shared data problem
arises.

A function to call a signal handler by interrupting the processes. It uses INT n
SWI n instruction, where n defines the handler, which should run.

It provides the logical link using a protocol between the tasks in a client-server
or peer-to-peer environment. It enables a bi-directional stream or datagram or
network stack.

To let each section of codes, tasks and ISRs run and gain access to the CPU one
after the other sequentially or concurrently, following a scheduling strategy, so
that there is a predictable operation at any instance. '
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Task ¢ A task is for the service of specific actions and may also correspond% 0f the
codes, which execute for an interrupt. A task is an independent procegs that
takes control of the CPU when scheduled by a scheduler at an OS. Evady task
has a TCB.

Task control block : A memory block that holds information of the PC, memory map, thé pignal
(message) dispatch table, signal mask, task ID, CPU state (registers and bn),
and a kernel stack (for executing system calls and so on). ‘

Task state : A state of a task that changes on scheduler directions. A task at an instangeican
be in one of the four states, idle, ready, blocked and running that are c':ic#led
by the scheduler. HE

Thread : A minimum unit for a scheduler to schedule the CPU and other system resojures.
A process may consist of multiple threads. A thread has an independent pfogess
control block like a TCB and a thread executes codes under the conEif a
scheduler. It is a light weight process. i

Review Questions

1. How does a data output generated by a process transfer to another using an IPC?

2. What are the parameters at a TCB of a task? Why should each task have distinct TCB?

3. What are the states of a task? Which is the entity controlling (scheduling) the transitions from one state to pnother

in a task?

4. Define critical section of a task. What are the ways by which the critical section run by blocking other process(es)?

5. How is data (shared variables) shielded in a critical section of a process before being operated and ch géd by

anther higher priority process that starts execution before the process finishes?

6. How does use of a counting semaphore differ from a mutex? How is a counting semaphore used?

7. Give an example of a deadlock situation during multiprocessing (multitasking) execution.

8. What is the advantage and disadvantage of disabling interrupts during the running of a critical section of a process?

9. Explain the term multitasking OS and multitasking scheduler.

10. Each process or task has an endless (infinite) loop in a pre-emptive scheduler. How does the control of resources
transfer from one task to another?

11. What is an exception and how is an error-handling task executed on throwing the exception?

12. How do functions differ from ISRs, tasks, threads and processes? Why is an ISR not permitted to use the IBC pend
wait functions. ¢

13. List the features of P and V semaphores and how these are used as a resource key, as a counting semaphor¢ and as
a mutex.

14. What are the situations, which lead to priority inversion problems? How does an OS solve this problem;by a
priority inheritence mechanism?

15. What is meant by a pipe? How does a pipe may differ from a queue? ‘

16. What is meant by a spinning lock? Explain the situation in which the use of the spin lock mechanism wpuld be
highly useful to lock the transfer of control to an higher priority task?

17. What is a mailbox? How does a mailbox pass a message during an IPC?

18. When are the sockets used for IPCs? List four examples. When are RPCs used? List two examples.

19. What are the analogies between process, task and thread? Also list the differences between the process, thsk and
thread.




20.

21

22.

23
24

25

26.

27.

28.

29
30

31

32. ¢
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Practice Exercises

I dsign a table to clearly distinguish the cases when there is concurrent processing of processes, when tasks and

when threads by using a scheduler.

¢ a table similar to Table 7.1 to clearly distinguish ISRs, ISTs and tasks.

at is the advantage of using a signal as an IPC? List the situations which warrant use of signals.

. Libt five exemplary applications of solutions to the bounded buffer problem using P and V mutex semaphores.

. Eyery tenth second a burst of 64 kB arrives at 512 kbps in an interval of 100 seconds. Is an input buffer required?
If lves, then how much? If yes, then write a program to use the buffer using P and V semaphores.

_ Use Web search to understand an IEEE-accepted standard POSIX 1000.3b in detail.

different IPCs be used? Given the choice, how will you select an IPC from signal, semaphore, queue or

pilbox?

st the tasks in the automatic chocolate-vending machine (Example 1.10.2). List the IPC functions required and

their uses in the ACVM.

st the processes used in smart card (Example 1.10.3). How does the card communicate with the host using the
isdckets? List the IPC functions required and their uses in the smart card.

. List the tasks in the digital camera (Example 1.10.4). List the IPC functions required and their uses in the camera.

. List the processes in the smart mobile phone (Example 1.10.5). The display process has multiple threads in the

iphone. List the threads. List the IPC functions required and their uses in the phone.

. Lyst the processes in the PDA (Example 1.10.6). Assume that PDA services the events by the ISRs and signal
ihandlers using a queue of the events. How can this be done? Show it by a diagram.
st the processes in the director of OPRs (Example 1.10.7). List the processes in eight playing robots in OPRs.




Real-Time Operating
Systems

K Following points have been discussed in the previous
chapter. :

Application program has functions, ISRs, threads,
processes (tasks) multiple physical as well as virtual
device drivers and several program objects, which
concurrently process on single or multiple
processors.

OS functions provide a mechanism to create
multiple tasks (processes and threads), control the
task-states and allocate system-resources to the
tasks.

OS functions control the context-switching in
multiprocessing (multitasking and multi-
threading) program.

The OS functions provides the IPC functions to
enable communication of the signals, semaphores
and messages from the ISRs and tasks to other
waiting service-thread or tasks.

The OS functions also provides the IPC functions
for the pipes, sockets and RPCs.

The OS also provides for mutex, lock and spin-
lock functions and for disabling of interrupts to
let a critical section of code run without pre-
emption by other process(es).




We will learn the following in this chapter.

I
2.

3.

XN W

9.

OS services.

Program structure, in-between layers of OS and interfaces between the top
application sofrware and down system-hardware layers.

OS functions for the process (task), timer, event, memory, device, file-system
and I/O-subsystem management.

RTOS providing in addition to the basic OS services, a control on the context
switching between the tasks such that the system satisfies the real-time
requirements, time constraints and deadlines of tasks.

ISR-handling in an RTOS environment.

Basic design principles when using an RTOS.

Soft and hard real-time scheduling considerations.

RTOS task-scheduling service models and basic strategies for scheduling the
multiple tasks—cooperative, cvclic, time slicing round robin and preemptive
scheduling RTOS, and critical section handling in priority scheduling cases.
OS security issues.

Chapters 9 to 12 will describe with exemplary RTOSes and case studies.

~ 8.1

OS SERVICES

8.1.1 Goal

The OS goals are perfection and correctness to achieve the following:

I.

Facilitating easy sharing of resources as per schedule and allocations. Resources
mean processor(s). memory, I/Os, devices, virtual devices (e.g., pipes, sockets),
system timer, keyboard, displays, printer and other such resources, which
processes (tasks or threads) request from the OS. No processing task or thread
uses any resource until it has been allocated by the OS at a given instance.
Facilitating easy implementation of the application-program with the given
system-hardware. An application programmer for a system can use the OS
functions that are provided in given OS without having to write the codes for
the services (functions) that follow.

Optimally scheduling the processes on one (or more CPUs if available) and
providing an appropriate context-switching mechanism.

Maximizing the system performance to let different processes (tasks or threads)
share the resources most efficiently with protection and without any security
breach. Examples of security breach are tasks obtaining illegal access to other
task-data directly without system calls, overflo'v of the stacks into memory
and overlaying of PCBs (Section 7.1) at the memory.
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5. Providing management functions for the processes (tasks or threads), memory, devices and IA
other functions.

6. Providing management and organization functions for the devices, files and virtual devid

l/Os.

Providing easy interfacing and management functions for the network protocols and network]

Providing portability of application on different hardware configurations.

Providing interoperability of application on different networks.

Providing a common set of interfaces that integrates various devices and applications throy

standard and open systems.

SN Sl

Ds and
es and

ing.

gh the

The OS goals are perfection, correctness, portability, interoperability and providing a common, ket of

interfaces for the system, and orderly access and control when managing the processes.

8.1.2 User and Supervisory Mode Structure

every tick of the clock, there is an interrupt. On interrupt, the system time updates, the system context s
to the supervisory mode from the user mode. After completing the supervisory (kernel-space) functi
system context switches back to the user mode.

When using an OS, the processor in the system runs in two modes. There is clock, called system cl}ck. At

3
H

!

itches
ns, the

1. User mcde: The user process is permitted to run and use only a subset of functions and instructi

OS. This is done in the user mode either by sending a message to a waiting process associated
OS kernel or by initiating a system call (call by an OS function). The use of hardware resources in

functions (which run on system call). This is because of the protected access to memory by the
running in user-space.

2. Supervisory mode: The OS runs the privileged functions and instructions in the protected mode
OS (more specifically, the kernel) only accesses the hardware resources and the protected area
[The term kernel means nucleus.] In the supervisory mode the kernel codes run in protected m
a system-call is permitted to read and write into the protected memory allotted to the OS functi
stack and heap. The kernel space functions execute faster than the user-space functions.

Example 8.1

RTOS Windows CE and several RTOSes enables running of all the application-program threads |}
the supervisory mode (kernel mode). Therefore, the threads execute fast. This improves the system;
performance. If the threads are to execute in the user mode, as in Unix or in non-real-time OS,
then the execution slows down due to checks on the code access to the protected kernel space.

8.1.3 Structure

A system can be assumed to have a structure as per Table 8.1.
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Taple 8.1 Layered Model of the System

Laer from Top Top-down Structure Layers Actions

P h Application software Executes as per the applications, run on the given system
hardware using the interfaces and the system software.

2 Application program Provides the interface (for inputs and outputs) between the
interface (API) application software and system software so that it is able to
run on the processor using the given system software.

3 System software other The OS may not have the functions, for example, for the specific
than the one provided at network and certain device drivers, such as a multimedia
the OS (operating system) device. This layer gives the system software services other than
those provided by the OS service functions.
4 OS interface Interface (for inputs and outputs) between the above and OS
5 oS Kemel supervisory mode services (Table 8.2), file management

and other functions such as the user-mode processing services.

6 Hardware-OS interface Interfaces to let the functions be executed on the given hardware
(processor, memory, ports and devices) of the system.

7 Hardware Processor(s), memories, buses, interfacing circuits, ports,
physical devices, timers and buses for devices networking.

é)S structure consists of kernel and other service functions. The OS enables an application run on the

all of the following structural units.

. 1. Kernel with file management and device management as part of the kernel in the given OS.
. Kernel without file management and device management as part of the kernel in the given OS and any
other needed functions not provided for at the kernel.
kernel is the basic structural unit of any OS in which the memory space of the functions, data and
stack are protected from access by any call other than the system-call. It can be defined as a secured unit of an OS
that gperates in the supervisory mode while the remaining part and the application software operates in the user
modg¢. Table 8.2 gives the functions (services) in the kernel, they are as per the OS design.

Thl ikemel has management functions for processes, resources, ISRs, ISTS, files, device drivers and IO
:z ystems and network subsystems. The memory or device and file management functions may be outside
e{kernel in a given OS, especially in an embedded system.
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Table 8.2 Kernel Services in an operating system (OS)
Function Actions #

Process! management: creation to deletion

Process management: process structure
maintenance

Process management: processing resource
requests

Processes management: scheduling

Process management: interprocess
communication (IPC) (communication
between tasks, ISRs, OS functions)

Services memory management allocation
and de-allocation?

File management?

Device management*

Device drivers

1/0 management

Interrupts control mechanism
(for handling ISRs)

- Enables process creation, activation, running, blocking, resu?tion,

deactivation and deletion and maintains process structure at
(process control block) (Section 7.1.1) E

F;CB

Enables process structure maintenance and its information at PCB

i

Processing resource requests by processes made either by mkﬁng
calls that are known as system calls or by sending message(@

" Processes scheduling. For example, in the cyclic scheduling or pnohty

scheduling mode (Section 8.10)

Processes synchronizing by sending data as messages from tpsk
to another. The OS effectively manages shared memory ac§s§ by
using the IPC signals, exception (error) handling signals, semaphotes,
queues, mailboxes, pipes and sockets (Section 7.9) Bl

Memory allocation, de-allocation and management. It also mtﬂcts
the memory access region for a task (Section 8.5) ¥ 3

File management provides management of the creation, deletion réad
(), write () to the files on the secondary memory disk (Secti u, 8;6).
A file in the embedded system (disk-free system) can be inRA
where the operations are done in RAM memory in a way identifal to
the file on disk af o

A physical device management is such that it is accessible to ong ¢
or process only at an instant. Device manager componerit§ 4
(i) device drivers and device ISRs (device interrupt hariife;
(ii) resource managers for the devices (Section 8.6). Besides pﬁ
devices, the management of virtual device like pipe or socket}
provided (Sections 7.14 and 7.15). Virtual devices emulate a h: l
device and the virtual device driver send signals (Section 7.10) _
to the ISR calls by the physical device i |
Facilitate the use of number of physical devices like keyboard,- Qay
systems, disk, parallel port, network interface cards, network dévices
and virtual devices (Section 8.6) .
Character or block I/Os management. For example, to ensure iﬂms

such that a parallel port or serial port is accessible to only one
a time (Section 8.6)

%
Facilitate running of the ISRs and ISTs (Section 8.7) 3 1

! When considering the processes controlled by an OS, a process also means task in multitasking OS, and thyead in
multithreading OS (Refer to Sections 7.1 to 7.3). ;
234 Memory, file and device management functions form the part of kernel in a given OS. However, these functions may be
outside the kernel in a given OS, especially in an embedded system using only the microkernel of an OS. This exclasion
makes the kernel code small.
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= 8.4 | PROCESS MANAGEMENT

8.2.1 Process Creation

At reset df processor in a computer system, an OS is initialized first, and then a process, which can be called initial
process, §s created (initialization of OS means enabling the use of OS functions, which includes the function to
create th¢ processes). Then the OS is started and that runs an initial process (starting the OS means calling the OS
functiond, which includes the call to all the created processes before the OS start but after the OS initialization).
Processes$ can be created hierarchically. The initial process creates subsequent processes. OS schedules the processes
and provjdes for context switching between the processes and threads (Sections 7.1 to 7.3).

mible 8.2
(a) R Example 7.4. It showed-an RTOS function to create a process: Task_,Send Card_Info by using

_T4sk_Create ( ) function in the main. Task_Send_Card_ Info task creates two other tasks,
Task‘ S d Port_Output and Task_Read_Port_Input. The OS then controls the context swuchmg between

S ’ play_Tlme_DateThread
: Ipisplay_BatteryThread
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for the cre ated process, stack, data and heap, and placing the process initial information at a PCB. The process
allocates a PCB (or TCB in case task represents a process) when it creates the process and later

rocess stack pointer.
urrent state: Is it created, activated or spawned? Is it running? Is it blocked? (spawn means create
and activate)

4. Addresses that are allocated and that are presently in use.

5. Pointer for the parent process in case there exists a hierarchy of the processes.

6. Pointer to a list of daughter processes (processes lower in the hierarchy).

7. Pointer to a list of resources, which are usable (consumed) only once. For example, input data, memory
buffer or pipe, mailbox message, semaphore (there may be producers and consumers of these resources).

8. Pointer to a list of resource type usable more than once: A resource type example is a memory block.

Another example is an IO port. Each resource type will have a count of these types. For example, the
number of memory blocks or number of IO ports.



9. Pointer to queue of messages. It is considered as a special case of resources that are usable
because messages from the OS also queue up to be controlled by a process.

11. ID by which identification is made by the process manager .

8.2.2 Management of the Created Processes

Sections 7.1 and 7.3.)

Process manager is a unit of the OS that is the entity responsible for controlling a process executi
management enables process creation, activation, running, blocking, resumption, deactivation and
process manager facilitates the following. Each process of a multiple process (or multitasking or multi
system is executed such that a process state can switch from one to another. A process does the:
sequential execution of the states: ‘created’, ‘ready or activate’, ‘spawn’ (means create and activate),
‘blocked’ or ‘suspended’, ‘resumed’ and ‘finished’ and ‘ready’ after ‘finish’ (when there is an infini
a process) and finally ‘deleted’. Blocking and resuming can take place several times in a long pr
different OSes make the provisions for possible states between creation and deletion differently.

The process manager executes a process request for a resource or OS service and then grants
to let the processes share the resources. For example, an LCD display is a shared resource. The L
can be used only by one task or thread at an instance. A running process requests by two methods,
listed in Table 8.3.

The process manager (i) makes it feasible for a process to sequentially (or concurrently) execute jor block
when needing a resource and to resume when it becomes available; (ii) implements the logical ligk to the
resource manager for resources management (including scheduling of processes on the CPU); (iif) allows
specific resources sharing between specified processes only; (iv) allocates the resources as per the fesource
allocation mechanism of the system and (v) manages the processes and resources of the given sys

request
display
hich are

A process manager creates the processes, allocates to each a PCB, manages access to resources and fi i
switching from one process state to another. The PCB defines the process structure for a process?

~ 8.3  TIMER FUNCTIONS B

A real-time clock (hardware timer timeout) in the system interrupts the system with each tick, which|occurs a
number of times in 1 second. An interrupt on a tick can be called SysClkIntr (system real-time clock timer ifterrupt).
An OS provides a number of OS timer functions. These functions use SysClkIntr interrupts on the clock ticks.
The periodic SysClkIntr interrupts on this tick is used by the system to switch to the supervi mode
from the user mode on every tick. The following are the steps.
1. Before servicing of SysClkIntr, the context of presently running task or thread saves on the TICB data
structure.
2. SysCIKIntr service routine calls the OS.
3. The OS finds the new messages or IPCs (Sections 7.9 to 7.15), which are received from the¢ system
call by the OS event control blocks for IPC functions.
4. The OS either selects the same task or selects a new task or thread [by preemption (Section 810.3) in
case of preemptive scheduling] and switches the context to the new one.
5. After return from the interrupt, the new task runs from the code, which was blocked from running earlier.
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Table8.3 Request for a Resource or Operating System (OS) Service by a Running Process

" Request Method Explanation

Mesgage(s) A process running on user mode generates and puts (sends) a message so that
the OS lets the requested resource (e.g., input from a device or from a queue)
use or run an OS service function (e.g., to define a delay period after which the
process needs to be run again). A message can be sent for the OS to let the LCD
display be used by a task or thread for sending the output. An ISR sends a
message to a waiting thread to start on return from the ISR (Section 8.7).

System call A call to a function defined at the OS. For example, OSTaskCreate () is a
system call to create a task. First an SW1 instruction is issued to trap the processor
and switch it to supervisory mode. The OS then executes a function like a library
function . On finishing the instructions of the called function, the processor
switches back from the supervisory mode to the user mode and lets the calling
process run further.

Each OS has a function for defining the OS ticks per second, which defines generation of the SysClklIntr
interrapts and which in turn provides the timer functions of the OS. The function thus defines the SysClkIntr
interrupt intervals after initiating the ticks. The functions thus also define the period after which the system calls
the ISR|on the SysClkInt: interrupts and switches to the OS supervisory mode functions listed before.

Example 8.3

(a) # d ine OS_TICK_PER_SEC 100 /*uCOS-1I function to define the number of ticks per second =
‘ re the beginning of main ( ) and initiating of OS by OSInit ( ) function*/.

D$Ticklnit () /#uCOS-1I function to initiate the defined number of ticks per second after the
ingdng of the first task and creation of all the tasks to which the context will be switched by

pion the tick. It initiates SysClkIntr interrupts every 10 ms as OS ticks/s = 100 */.

Thd number of ticks if made large, then the frequent running of the OS codes to be run on SysClklIntr
interrupt takes place because the context switching to the supervisory mode takes place too frequently. The
number of ticks, if made small, the total time spent on SysClkIntr interrupts per second reduces, but then

aple 8.4

a ticks period be set to 10 ms. Assume that time spent in servicing SysClkIntr interrupt is 10 ps.
100 +10 ms = 0.1% of time is spent in SysClkIntr interrupt-initiated ISRs. Let the OS ticks
perjogibe set to 100 ps. Assume that time spent in servicing SysCIkIntr interrupt is 10 ps. 10 ps x
1004400 ps = 10% of time is spent in SysCIkIntr interrupt-initiated ISRs though time resolution

of O time functions improve to 100 ps instead of 10 ms earlier.
¥ ¥

Table 8.4 gives the example of RTOS timer functions and the actions on calling these functions. There are
RTOS timer functions for the delay, delay resume, time set, time get and for waiting-time setting for the IPC
events (e.g., semaphore, mailbox, message queue message).
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Table 8.4 Exemplary Timer Functions

- o
Function Action on Calling the Function as“! {

clock-ticks. The mboxErr points to the error.

OS_TICK_PER_SEC Defines the number of system clock ticks per second, which is also th;meber
of SysCikIntr interrupts per second. :
OSTickInit () Initiate the clock ticks in the system and SysClkIntr interrupts
OSTimeDelay () Delay the task executing this function ‘
OSTimeDelayResume ( ) Resume the delayed task ;
OSTimeSet () Set the system clock tick count value. OSTimeSet (1000 ) sets the count =§ 000.
- OSTimeSet (0) sets the. count = 0. After each SysClkintr and clocm hidk the
count increments by 1
OSTimeGet () Get the system clock-tick’s count value. :
OSSemPend Wait for the semaphore release and semVal becoming 1 for the perid @s per
(semVal, twait, twait, if semaphore released in this period, then take it and task proceedq farther
*semErr) after decrementing the semVal to 0, else after twait defined period, the ¢ Kk code
proceeds with no further wait. If rwait = 100, then wait for 100 systégh tlock
ticks. The semErr points to the error. K
OSMboxPend Wait for the mailbox message for the period as per twait, if mailbox is 3? the
(semVal, twait, message, then take it and the task proceeds further, else after twait fidfined
*mboxErr) period, the task code proceeds further. If twair = 100, then wait for 108is§stem

Example 8.5

(a) OSTimeDelay (n) by period equal to period of n clock ticks. b
(b) Assume that using the timer functions, OS_TICKS. PER_SEC 100 and OSTickInit (); the systes
ticks every 10 ms. Assume that ACVM (Section 1.10.2), the Task_ReadCoins for reading the coin is %
Consider that the following codes in the while loop of an AVCM task, Task Read-Amount (Examg

waitsfor 1 minute for the coin amount:
/*************************************************************l

count =0; OSTimeSet (count);

while (count < = 6000) /* While loop waits for for the coins amount upto 60000 ms = 1 minute *i i

{count = OSTimeGet ( ); OSTlmeDelay (100);
/* Code for finding the coins amount after every 100 clock ticks, which means every 1 s*/

;.;

;)
/*************************************************************/

~ (c) Calling OSTimeGet ( ), finding the count, countl, running a section of codes and then calli
OSTimeGet ( ), finding the new count, count? defines the interval, T spent by the system in
between the two function calls of OSTimeGet ( ). T = {(count2 — countl) X interval
between two clock ticks} is the interval between two calls to OSTimeGet.

" 8.4  EVENT FUNCTIONS

In case of IPC (Section 7.9), there is wait for only one semaphore post event or mailbox message-p{asting
event (Sections 7.10 to 7.15). Provisioning of event functions in an OS offers an advantage that therg qan be

wait for more than one event and the events can also be from the different tasks or ISRs.
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The queue messages can be from the different tasks or ISRs. Queues can offer the same advantage that
there ca be wait for more than one messages. However, the OS functions for queue execute in more time than
the event-functions. Some OS supports and some do not support event functions. The event-functions enable
(O ac!ti ns after a group of events. The OS event functions can be understood as follows:

Therg is an event register. It has 8 or 16 or 32 event-flags, which form the groups. Each bit of the group in
the regigter corresponds to one event flag in a set of flags.

Anjeyent register creates using an OS function, OSEventCreate ( ). An event register can be divided into
groupi ach group assigned to different tasks. For example, a 16-bit register can be divided into four groups.
Group (fis from bit 0 to bit 3, group 1 from bit 4 to bit 7, group 2 is from bit 8 to bit 11 and group 3 is from bit
12 to bif 15. An OS function, OSEventQuery ( ) queries an event register to find the event register existence
and it§ dontents. An event register deletes using an OS function, OSEventDelete ().

Each|event sets one of the bits at the event register using the SET (eventFlag) function. Event flag in the

]

can use the WAIT_ALL function for the occurrences of setting all the event flags in a group. [Wait
till ANI) operation between all flags in the group equals to true.] The task can use WAIT_ANY function for
an occugrence of setting of any of the event flags in the group. [Wait till OR operation between all flags in the
uals to true.]

3
o &
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MEMORY MANAGEMENT

8.5.1 |Memory Allocation

When ajprocess is created, the memory manager allocates the memory addresses (blocks) to it by mapping the
process pddress space (Section 7.1). Threads of a process share the memory space of the process (Section 7.2).

8.5.2| Memory Management after Initial Allocation

The mefnory manager of the OS has to be secure, robust and well protected. There must be control such that
there are no memory leaks and stack overflows. Memory leaks mean attempts to write in the memory block
not allogated to a process or data structure. Stack overflow means that the stack exceeds the allocated memory
block(s] when there is no provision for additional stack space. Table 8.5 gives memory-management strategy.

qed for creating memory address space for a buffer or a messages queue or some other purpose during
jbn of a task. Dynamic memory de-allocation is used for freeing the memory taken up for the buffer
duripg gxecution of the task. o '

hgider fragmented physical memory allocations. Fragmented means. that memory addresses in two

i§ gpent in first locating the next free memory address before allocating that to the process. A standard
memayy allocation scheme scans a linked list of indeterminate length to find a suitable free memory block.

infene allotted block of memory is de-allocated, the time is spent in first locating the next allocated
) block before de-allocating that to the process. The time for allocation and de-allocation of the
: ¥y and blocks are variable (not deterministic) when the block sizes are variable and when the memory
is fragihented. In RTOS, this leads to unpredictable task-performance (run-time).



RTOS puCOS-I provides for memory partitioning. A task must create a memory partition :ﬁiﬁ{reml
memory partitions by using function OSMemCreate ( ). Then the task is permitted to use the p.

partitions. A partition has several memory blocks. A task gets a memory block or blocks from|the
partition by using function OSMemGet (). A task releases a memory block or blocks to the pamtﬁm !
by using function OSMemPut ( ). Therefore, the task consists of several fixed size memory blocks‘ i
The fixed size memory blocks allocation and de-allocation time takes fixed time (deterministic).
Therefore, it leads to a predictable task-performance. y

Table 8.5 Memory Managing Strategy for a System

Embedded Qsems

0%101‘

Managing Strategy

Explanation

Fixed blocks allocation

Dynamic blocks allocation'

Dynamic page allocation'

Dynamic data memory
allocation

Dynamic address relocation’

Multiprocessor memory
allocation

Memory protection to
OS functions?

Memory protection among
the tasks?

spaces getting a lesser number of blocks and processes with big address}spaces
getting a larger number of blocks. i

Memory address space is divided into fixed blocks as above and then later the
manager later allocates variable size blocks (in units of say 64 or 256 bytes) dy
allocated from a free (unused) list of memory blocks description table at the gy
computation phases of a process. :

Memory has fixed sized blocks called pages and the memory manager MMU (mpemory
management unit) allocates the pages dynamically with a page descriptor tpl Iq

Memory address space is divided into blocks with processes having smalk Tcklress
S8

The manager allocates memory dynamically to different data structures like th
of a list, queues and stacks. 1
The manager dynamically allocates the addresses initially bound to the:se
addresses. It adds the relauvc address to address with relocation reglster The T ‘

Refer to Section 6.3. The memory adopts an allocation strategy either share Ivith
tight coupling between two or more processors or shared with loose coupli g or
multisegmented allocations. 2

Memory protection to the OS functions means that the system call (call to an OS

and function call in user space are distinct. The OS function code, data and stack
the protected memory area. It means that when a user function call attempts td?
read in the exclusive memory space allocated to the OS functions, it is blocked§

system generates an error. The memory of kernel functions is distinct am} icdn be
addressed only by the systems calls. The memory space is called kernel spao&

Memory protection to the tasks means that a task function call cannot atidmpt to
write or read in the exclusive area of memory space allocated to another The
protection increases the memory requirement for each task and also the tion

time of the code of the task.

IRTOS may disable the support to the dynamic block allocation, MMU support to the dynamic page allocation and dYnamjc
binding as this increases the latency of servicing the tasks and ISRs.

2RTOS may not support memory protection of the OS functions from user function calls, as this increases the latency of

servicing the tasks and ISRs. The user functions are then runnable in kernel space and run like kernel functions.

3 RTOS may provide for disabling of the support to memory protection among the tasks as this increases the memory reg u'n'ement

for each task.
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Thé memory manager manages the following: (i) use of memory address space by a process, (ii) specific
mechanjsms to share the memory space, (iii) specific mechanisms to restrict sharing of a given memory space
and (iv)|optimization of the access periods of a memory by using an hierarchy of memories (caches, primary
and extdrnal secondary magnetic and optical memories). Remember that the access periods are in the following
ipg order: caches, primary and external secondary magnetic and then optical.

mory manager allocates memory to the processes and manages it with appropriate protection. There

may /static and dynamic allocations of memory. The manager optimizes the memory needs and memory
utilifation. An RTOS may disable the support to the dynamic block allocation, MMU support to the dynamic
page allocation and dynamic binding as this increases the latency of srvicing the tasks and ISRs. An RTOS

1of ;ﬁlay not support memory protection in order to reduce the latency and memory needs of the processes.

8.6} DEVICE, FILE AND 10 SUBSYSTEMS MANAGEMENT

8.6.1| Device Management

Recall .fpection 4.2. There are number of device drive ISRs for each device in a system, each driver-function
of a deyice (e.g. open, close, read) calls a separate ISR. Device managr (inside or outside the kernel space) is
the sor‘f;Fare that manages these for all. When device driver functions are a part of the OS (inside or outside

the kerrlel space), the device manager effectively operates and adopts appropriate strategy for obtaining optimal
performance for the devices. The manager coordinates between application process, driver- and device-
controller. A process sends a request to the driver functions by an interrupt using SWI; and the driver provides
the actipns on calling and executing the ISR. The device manager polls the requests at the devices and the
actions|occur as per their priorities. The device manager manages IO interrupt (requests) queues. The device
managgr creates an appropriate kernel interface and API, and that activates the control register-specific actions
of the device. The device controller is activated through the API and kernel interface (recall Section 1.4.6).
An OS|device manager provides and executes the modules for managing the devices and their driver ISRs.

1. [It manages the physical as well as virtual devices like the pipes and sockets through a common strategy.

2. [Device management has three standard approaches to three types of device drivers: (i) programmed I/Os
by polling the service need from each device; (ii) interrupt(s) from the device driver ISR and (iii) DMA
" |operation used by the devices to access the memory. Most common is the use of device driver ISRs.
3. |A device manager has the functions given in Table 8.6.

Table 8.6 Functions of a Device Manager

Function Action(s)

Devicg detection and addition Provides the codes for detecting the presence of various devices, then adding
(initializing, configuring and testing) them for the use of OS device driver
functions. A manager can provide for tracking the hardware inventory (list
of devices present in the system and.connected to the system). *

¥

Devicg deletion Provides the codes for denying the device resources.

Devicp allocation and registration Allocates and registers the port (it may be a register or memory) addresses
for the various devices at distinctly different addresses and also includes
codes for detecting any collision between them.

(Contd)




Function

I , .
Action(s) _ o

Detaching and deregistration

Restricting device to a specific process

Device sharing

Device control

Device access management

Device buffer management

Device queue, circular-queue or
blocks of queue management

Device driver

Device drivers updating and
uploading of new device functions

Backup and restoration

Detaches and deregisters the port (it may be a register or memory) sses
for the various devices at distinctly different addresses and also jcldes
codes for detecting any collision between existing addresses in;dage of
addresses reallocation to the remaining attached (registered) devnc

Restncts a devxce access to one process (task) only, at an instant.

o

o
Permits sharmg of access of a device to the set of processes, buk¥aj one
process (task) at an instant. #

il

A manager can also provide for remote control of the devices from thé hote
server at the service provider. (For example, mobile devices with @ Yver at
the service-provider) ‘

(i) sequential access, (ii) random access, (iii) semi-randomf cdess,
(iv) serial communication may be by UART or USB, and (v) 4 (arjmore)
serial bits in parallel during IOs (for example, SDIO) (Chapter 3). The vice
manager provides the necessary interface. 1

Device hardware may merely have a single byte buffer, or double Bffér or
8-byte buffer. A device buffer manager uses a memory manager w{bhffer
the 1/O data streams from the device that sends the data and re§nages
computations without wait while the buffer receives the dataata siauy sate.!
Also used are the multiple buffers and producer—consumer-type §duided
buffers (Section 7.7.6). ‘ ,

Device 10 data streams from the device can be organized as the q ,
circular queunes and blocks of queues (Section 5.4.3). ad

k3
A manager manages the device drivers. A device driver or a s .t*are
driver is the software for interface with the device hardware g
the buses on the one hand and for interface with the OS and ap ion
on other hand. The software commands for read and write ggaples
the read and write functions through the ISRs called by using the"$WIs.?
The interface sofware to OS enables the creation, connection, i ding,

opening and closing of the device® (Section 4.1). ‘

A manager can also provide for updating the driver software from the Ijternet
and uploading the new device functions, which become available at,
date. ' 4
A manager can also provide for the backup and restoration for drive

5

! For example, when the computations for deciphering the input data is slower than the receiving data in the buffer, the buffer(s)
will soon choke. When the computations for deciphering the input data is faster than the receiving data in the buffer, the

computations will wait for data in buffer.
2 For hardware devices, a device ISR can also be called a system ISR or a system interrupt handler.

3 For example, Unix device driver components are: (i) device ISR, (ii) device initialization codes (codes for configuring device

control registers) and (iii) system initialization codes, which run just after the system resets (at bootstrapping).

Table 8.7 gives the set of OS command functions for a device.




